
© 2009 Cigital

Exploiting Software:

How to Break Code

Gary McGraw, Ph.D.

CTO, Cigital

http://www.cigital.com

© 2009 Cigital

Pop quiz

 What do wireless devices, cell phones, PDAs,

browsers, operating systems, servers, routers,

personal computers, public key infrastructure

systems, and firewalls have in common?

Software

badness-ometer

© 2009 Cigital

Cigital

 Founded in 1992 to provide software security and software

quality professional services

 Recognized experts in software security and software quality

 Widely published in books, white papers, and articles

 Industry thought leaders

http://www.cigital.com/books/wirelesssec/
http://www.cigital.com/books/80211/

© 2009 Cigital

So what’s the problem?

© 2009 Cigital

Time

Intrusions

Disclosure Patch

Released

Scripting

Patches are attack maps

© 2009 Cigital

Builders versus operators

 Most security people are

operations people

 Network administrators

 Firewall rules

manipulators

 COTS products

glommers

 These people need

training

Security means different

things to different people

 Most builders are not

security people

 Software development

remains a black art

 How well are we doing

teaching students to

engineer code?

 Emergent properties like

security are hard for

builders to grok

 These people need

academic education

© 2009 Cigital

Attaining software security gets harder

The Trinity of Trouble

 Connectivity

 The Internet is everywhere

and most software is on it

 Complexity

 Networked, distributed,

mobile code is hard

 Extensibility

 Systems evolve in

unexpected ways and are

changed on the fly

This simple interface……is this complex program.NET

The network is

the computer.

© 2009 Cigital

Who is the bad guy?

 Hackers

 “Full disclosure” zealots

 “Script kiddies”

 Cyber criminals

 Lone guns or organized

 Malicious insiders

 Compiler wielders

 Business competition

 Police, press, terrorists, intelligence agencies

© 2009 Cigital

History is quirky

1995

 Dan Farmer fired from

Silicon Graphics for

releasing SATAN with

Wietse Venema

 FUD: possible attack tool!

2009

 Any system administrator

not using a port scanner to

check security posture runs

the risk of being fired

Fall 2004

 John Aycock at University of

Calgary publicly criticized

for malware course

 FUD: possible bad guy

factory

Should we talk about

attacking systems?

© 2009 Cigital

The good news and the bad news

Good news

 The world loves to talk about

how stuff breaks

 This kind of work sparks lots of

interest in computer security

Bad news

 The world would rather not focus

on how to build stuff that does

not break

 It’s harder to build good stuff

than to break junky stuff

© 2009 Cigital

Know your enemy: How stuff

breaks

© 2009 Cigital

Security problems are complicated
IMPLEMENTATION BUGS

 Buffer overflow

 String format

 One-stage attacks

 Race conditions

 TOCTOU (time of check to
time of use)

 Unsafe environment variables

 Unsafe system calls

 System()

 Untrusted input problems

ARCHITECTURAL FLAWS

 Misuse of cryptography

 Compartmentalization
problems in design

 Privileged block protection
failure (DoPrivilege())

 Catastrophic security failure
(fragility)

 Type safety confusion error

 Insecure auditing

 Broken or illogical access
control (RBAC over tiers)

 Method over-riding problems
(subclass issues)

 Signing too much code

50% 50%

© 2009 Cigital

Attackers do not distinguish bugs and flaws

 Both bugs and flaws
lead to vulnerabilities
that can be exploited

 Attackers write code to
break code

 Defenders are network
operations people

 Code?! What code?

© 2009 Cigital

The attacker’s toolkit

 The standard attacker’s toolkit has lots of (software

analysis) stuff

 Disassemblers and decompilers

 Control flow and coverage tools

 APISPY32

 Breakpoint setters and monitors

 Buffer overflow

 Shell code

 Rootkits

© 2009 Cigital

Attacker’s toolkit: dissasemblers and decompilers

 Source code is not a necessity for software exploit

 Binary is just as easy to understand as source code

 Disassemblers and decompilers are essential tools

 Reverse engineering is common and must be

understood (not outlawed)

 IDA allows plugins to be created

 Use bulk auditing

© 2009 Cigital

Attacker’s toolkit: control flow and coverage

 Tracing input as it flows through

software is an excellent method

 Exploiting differences between

versions is also common

 Code coverage tools help you

know where you have gotten in a

program

 dyninstAPI (Maryland)

 Figure out how to get to

particular system calls

 Look for data in shared buffers

© 2009 Cigital

Attacker’s toolkit: buffer overflow foo

 Find targets with static analysis

 Change program control flow

 Heap attacks

 Stack smashing

 Trampolining

 Arc injection

 Particular examples

 Overflow binary resource files

(used against Netscape)

 Overflow variables and tags

(Yamaha MidiPlug)

 MIME conversion fun

(Sendmail)

 HTTP cookies (apache)

 Trampolining past a canary

Local Variable: Buffer B

Local Variable: Pointer A

Local Variable: Buffer A

Function arguments

Return Address

Canary Value

Frame Pointer

© 2009 Cigital

Attacker’s toolkit: shell code and other payloads

 Common payloads in buffer overflow

attacks

 Size matters (small is critical)

 Avoid zeros

 XOR protection (also simple crypto)

 Payloads exist for

 X86 (win32)

 RISC (MIPS and sparc)

 Multiplatform payloads

© 2009 Cigital

Attacker’s toolkit: rootkits

 The apex of software exploit…complete
control of the machine

 Live in the kernel

 XP kernel rootkit in the book

 See http://www.rootkit.com

 Hide files and directories by controlling
access to process tables

 Provide control and access over the
network

 Get into the EEPROM (hardware viruses)

http://www.rootkit.com/

© 2009 Cigital

Example: Advanced game hacking fu

 See Hacking World of Warcraft: An exercise in advanced

rootkit development

 Greg Hoglund’s presentation from Black Hat 2006

 http://www.rootkit.com/vault/hoglund/GregSlidesWoWHack.

rar

© 2009 Cigital

State of the art

 Combine injected payload with cloaking and thread hijacking to

FORCE in-game events

 Spell casting

 Movement

 Chat

 Acquire and clear targets

 Loot inventory

© 2009 Cigital

MAIN

THREAD

MAIN

THREAD INJECTED

CODE PAGE

HARDWARE BP

RenderWorld(..)
uncloak

MSG

super

branch

RenderWorld(..)

complete

recloak

restore

CastSpellByID(..)

ScriptExecute(..)

ClearTarget(..)

MAIN

THREAD

© 2009 Cigital

Attacker’s toolkit: other miscellaneous tools

 Debuggers (user-mode)

 Kernel debuggers

 SoftIce

 Fault injection tools

 FUZZ

 Failure simulation tool

 Hailstorm

 Holodeck

 Boron tagging

 The “depends” tool

 Grammar rewriters

© 2009 Cigital

How attacks unfold

 The standard process

 Scan network

 Build a network map

 Pick target system

 Identify OS stack

 Port scan

 Determine target

components

 Choose attack patterns

 Break software

 Plant backdoor

 Attacking a software system is
a process of discovery and
exploration

 Qualify target (focus on
input points)

 Determine what
transactions the input
points allow

 Apply relevant attack
patterns

 Cycle through observation
loop

 Find vulnerability

 Build an exploit

© 2009 Cigital

Knowledge: 48 Attack Patterns
 Make the Client Invisible

 Target Programs That Write to Privileged OS Resources

 Use a User-Supplied Configuration File to Run
Commands That Elevate Privilege

 Make Use of Configuration File Search Paths

 Direct Access to Executable Files

 Embedding Scripts within Scripts

 Leverage Executable Code in Nonexecutable Files

 Argument Injection

 Command Delimiters

 Multiple Parsers and Double Escapes

 User-Supplied Variable Passed to File System Calls

 Postfix NULL Terminator

 Postfix, Null Terminate, and Backslash

 Relative Path Traversal

 Client-Controlled Environment Variables

 User-Supplied Global Variables (DEBUG=1, PHP
Globals, and So Forth)

 Session ID, Resource ID, and Blind Trust

 Analog In-Band Switching Signals (aka “Blue Boxing”)

 Attack Pattern Fragment: Manipulating Terminal Devices

 Simple Script Injection

 Embedding Script in Nonscript Elements

 XSS in HTTP Headers

 HTTP Query Strings

 User-Controlled Filename

 Passing Local Filenames to Functions That Expect a
URL

 Meta-characters in E-mail Header

 File System Function Injection, Content Based

 Client-side Injection, Buffer Overflow

 Cause Web Server Misclassification

 Alternate Encoding the Leading Ghost Characters

 Using Slashes in Alternate Encoding

 Using Escaped Slashes in Alternate Encoding

 Unicode Encoding

 UTF-8 Encoding

 URL Encoding

 Alternative IP Addresses

 Slashes and URL Encoding Combined

 Web Logs

 Overflow Binary Resource File

 Overflow Variables and Tags

 Overflow Symbolic Links

 MIME Conversion

 HTTP Cookies

 Filter Failure through Buffer Overflow

 Buffer Overflow with Environment Variables

 Buffer Overflow in an API Call

 Buffer Overflow in Local Command-Line Utilities

 Parameter Expansion

 String Format Overflow in syslog()

© 2009 Cigital

Attack pattern 1:

Make the client invisible

 Remove the client from the

communications loop and

talk directly to the server

 Leverage incorrect trust

model (never trust the

client)

 Example: hacking browsers

that lie (opera cookie foo)

© 2009 Cigital

Breaking stuff is important

 Learning how to think like

an attacker is essential

 Do not shy away from

discussing attacks

 Engineers learn from

stories of failure

 Attacking projects is useful

© 2009 Cigital

Great, now what do we

do about this?

© 2009 Cigital

Three pillars of software security

1. Risk management framework

2. Touchpoints

3. Knowledge

© 2009 Cigital

Software security touchpoints

© 2009 Cigital

What works: BSIMM

 Building Security

In Maturity Model

 Real data from

real initiatives

© 2009 Cigital

 Four domains

 Twelve practices

 See informIT article at
http://www.informit.com/articles/article.aspx?p=1271382

A Software Security Framework

© 2009 Cigital

Ten surprising things

1. Bad metrics hurt

2. Secure-by default

frameworks

3. Nobody uses

WAFs

4. QA can’t do

software security

5. Evangelize over

audit

6. ARA is hard

7. Practitioners don’t

talk attacks

8. Training is

advanced

9. Pen testing is

diminishing

10. Fuzz testing

 http://www.informit.com/articles/article.aspx?p=1315431

© 2009 Cigital

Where to Learn More

© 2009 Cigital

informIT & Justice League

 www.informIT.com

 No-nonsense monthly security

column by Gary McGraw

 www.cigital.com/justiceleague

 In-depth thought leadership blog

from the Cigital Principals

 Scott Matsumoto

 Gary McGraw

 Sammy Migues

 Craig Miller

 John Steven

© 2009 Cigital

IEEE Security & Privacy Magazine + 2 Podcasts

 www.cigital.com/silverbullet

 www.cigital.com/realitycheck

 Building Security In

 Software Security Best

Practices column edited by

John Steven

 www.computer.org/security/bsisub/

© 2009 Cigital

Software Security: the book

 How to DO software security

 Best practices

 Tools

 Knowledge

 Cornerstone of the Addison-

Wesley Software Security

Series

 www.swsec.com

© 2009 Cigital

For more
 Cigital’s Software Security

Group invents and delivers
Software Quality Management

 See the Addison-Wesley
Software Security series

 WE NEED GREAT PEOPLE

 Send e-mail: gem@cigital.com

“So now, when we face a choice between

adding features and resolving security issues,
we need to choose security.”

-Bill Gates

