
© 2009 Cigital

Exploiting Software:

How to Break Code

Gary McGraw, Ph.D.

CTO, Cigital

http://www.cigital.com

© 2009 Cigital

Pop quiz

 What do wireless devices, cell phones, PDAs,

browsers, operating systems, servers, routers,

personal computers, public key infrastructure

systems, and firewalls have in common?

Software

badness-ometer

© 2009 Cigital

Cigital

 Founded in 1992 to provide software security and software

quality professional services

 Recognized experts in software security and software quality

 Widely published in books, white papers, and articles

 Industry thought leaders

http://www.cigital.com/books/wirelesssec/
http://www.cigital.com/books/80211/

© 2009 Cigital

So what’s the problem?

© 2009 Cigital

Time

Intrusions

Disclosure Patch

Released

Scripting

Patches are attack maps

© 2009 Cigital

Builders versus operators

 Most security people are

operations people

 Network administrators

 Firewall rules

manipulators

 COTS products

glommers

 These people need

training

Security means different

things to different people

 Most builders are not

security people

 Software development

remains a black art

 How well are we doing

teaching students to

engineer code?

 Emergent properties like

security are hard for

builders to grok

 These people need

academic education

© 2009 Cigital

Attaining software security gets harder

The Trinity of Trouble

 Connectivity

 The Internet is everywhere

and most software is on it

 Complexity

 Networked, distributed,

mobile code is hard

 Extensibility

 Systems evolve in

unexpected ways and are

changed on the fly

This simple interface……is this complex program.NET

The network is

the computer.

© 2009 Cigital

Who is the bad guy?

 Hackers

 “Full disclosure” zealots

 “Script kiddies”

 Cyber criminals

 Lone guns or organized

 Malicious insiders

 Compiler wielders

 Business competition

 Police, press, terrorists, intelligence agencies

© 2009 Cigital

History is quirky

1995

 Dan Farmer fired from

Silicon Graphics for

releasing SATAN with

Wietse Venema

 FUD: possible attack tool!

2009

 Any system administrator

not using a port scanner to

check security posture runs

the risk of being fired

Fall 2004

 John Aycock at University of

Calgary publicly criticized

for malware course

 FUD: possible bad guy

factory

Should we talk about

attacking systems?

© 2009 Cigital

The good news and the bad news

Good news

 The world loves to talk about

how stuff breaks

 This kind of work sparks lots of

interest in computer security

Bad news

 The world would rather not focus

on how to build stuff that does

not break

 It’s harder to build good stuff

than to break junky stuff

© 2009 Cigital

Know your enemy: How stuff

breaks

© 2009 Cigital

Security problems are complicated
IMPLEMENTATION BUGS

 Buffer overflow

 String format

 One-stage attacks

 Race conditions

 TOCTOU (time of check to
time of use)

 Unsafe environment variables

 Unsafe system calls

 System()

 Untrusted input problems

ARCHITECTURAL FLAWS

 Misuse of cryptography

 Compartmentalization
problems in design

 Privileged block protection
failure (DoPrivilege())

 Catastrophic security failure
(fragility)

 Type safety confusion error

 Insecure auditing

 Broken or illogical access
control (RBAC over tiers)

 Method over-riding problems
(subclass issues)

 Signing too much code

50% 50%

© 2009 Cigital

Attackers do not distinguish bugs and flaws

 Both bugs and flaws
lead to vulnerabilities
that can be exploited

 Attackers write code to
break code

 Defenders are network
operations people

 Code?! What code?

© 2009 Cigital

The attacker’s toolkit

 The standard attacker’s toolkit has lots of (software

analysis) stuff

 Disassemblers and decompilers

 Control flow and coverage tools

 APISPY32

 Breakpoint setters and monitors

 Buffer overflow

 Shell code

 Rootkits

© 2009 Cigital

Attacker’s toolkit: dissasemblers and decompilers

 Source code is not a necessity for software exploit

 Binary is just as easy to understand as source code

 Disassemblers and decompilers are essential tools

 Reverse engineering is common and must be

understood (not outlawed)

 IDA allows plugins to be created

 Use bulk auditing

© 2009 Cigital

Attacker’s toolkit: control flow and coverage

 Tracing input as it flows through

software is an excellent method

 Exploiting differences between

versions is also common

 Code coverage tools help you

know where you have gotten in a

program

 dyninstAPI (Maryland)

 Figure out how to get to

particular system calls

 Look for data in shared buffers

© 2009 Cigital

Attacker’s toolkit: buffer overflow foo

 Find targets with static analysis

 Change program control flow

 Heap attacks

 Stack smashing

 Trampolining

 Arc injection

 Particular examples

 Overflow binary resource files

(used against Netscape)

 Overflow variables and tags

(Yamaha MidiPlug)

 MIME conversion fun

(Sendmail)

 HTTP cookies (apache)

 Trampolining past a canary

Local Variable: Buffer B

Local Variable: Pointer A

Local Variable: Buffer A

Function arguments

Return Address

Canary Value

Frame Pointer

© 2009 Cigital

Attacker’s toolkit: shell code and other payloads

 Common payloads in buffer overflow

attacks

 Size matters (small is critical)

 Avoid zeros

 XOR protection (also simple crypto)

 Payloads exist for

 X86 (win32)

 RISC (MIPS and sparc)

 Multiplatform payloads

© 2009 Cigital

Attacker’s toolkit: rootkits

 The apex of software exploit…complete
control of the machine

 Live in the kernel

 XP kernel rootkit in the book

 See http://www.rootkit.com

 Hide files and directories by controlling
access to process tables

 Provide control and access over the
network

 Get into the EEPROM (hardware viruses)

http://www.rootkit.com/

© 2009 Cigital

Example: Advanced game hacking fu

 See Hacking World of Warcraft: An exercise in advanced

rootkit development

 Greg Hoglund’s presentation from Black Hat 2006

 http://www.rootkit.com/vault/hoglund/GregSlidesWoWHack.

rar

© 2009 Cigital

State of the art

 Combine injected payload with cloaking and thread hijacking to

FORCE in-game events

 Spell casting

 Movement

 Chat

 Acquire and clear targets

 Loot inventory

© 2009 Cigital

MAIN

THREAD

MAIN

THREAD INJECTED

CODE PAGE

HARDWARE BP

RenderWorld(..)
uncloak

MSG

super

branch

RenderWorld(..)

complete

recloak

restore

CastSpellByID(..)

ScriptExecute(..)

ClearTarget(..)

MAIN

THREAD

© 2009 Cigital

Attacker’s toolkit: other miscellaneous tools

 Debuggers (user-mode)

 Kernel debuggers

 SoftIce

 Fault injection tools

 FUZZ

 Failure simulation tool

 Hailstorm

 Holodeck

 Boron tagging

 The “depends” tool

 Grammar rewriters

© 2009 Cigital

How attacks unfold

 The standard process

 Scan network

 Build a network map

 Pick target system

 Identify OS stack

 Port scan

 Determine target

components

 Choose attack patterns

 Break software

 Plant backdoor

 Attacking a software system is
a process of discovery and
exploration

 Qualify target (focus on
input points)

 Determine what
transactions the input
points allow

 Apply relevant attack
patterns

 Cycle through observation
loop

 Find vulnerability

 Build an exploit

© 2009 Cigital

Knowledge: 48 Attack Patterns
 Make the Client Invisible

 Target Programs That Write to Privileged OS Resources

 Use a User-Supplied Configuration File to Run
Commands That Elevate Privilege

 Make Use of Configuration File Search Paths

 Direct Access to Executable Files

 Embedding Scripts within Scripts

 Leverage Executable Code in Nonexecutable Files

 Argument Injection

 Command Delimiters

 Multiple Parsers and Double Escapes

 User-Supplied Variable Passed to File System Calls

 Postfix NULL Terminator

 Postfix, Null Terminate, and Backslash

 Relative Path Traversal

 Client-Controlled Environment Variables

 User-Supplied Global Variables (DEBUG=1, PHP
Globals, and So Forth)

 Session ID, Resource ID, and Blind Trust

 Analog In-Band Switching Signals (aka “Blue Boxing”)

 Attack Pattern Fragment: Manipulating Terminal Devices

 Simple Script Injection

 Embedding Script in Nonscript Elements

 XSS in HTTP Headers

 HTTP Query Strings

 User-Controlled Filename

 Passing Local Filenames to Functions That Expect a
URL

 Meta-characters in E-mail Header

 File System Function Injection, Content Based

 Client-side Injection, Buffer Overflow

 Cause Web Server Misclassification

 Alternate Encoding the Leading Ghost Characters

 Using Slashes in Alternate Encoding

 Using Escaped Slashes in Alternate Encoding

 Unicode Encoding

 UTF-8 Encoding

 URL Encoding

 Alternative IP Addresses

 Slashes and URL Encoding Combined

 Web Logs

 Overflow Binary Resource File

 Overflow Variables and Tags

 Overflow Symbolic Links

 MIME Conversion

 HTTP Cookies

 Filter Failure through Buffer Overflow

 Buffer Overflow with Environment Variables

 Buffer Overflow in an API Call

 Buffer Overflow in Local Command-Line Utilities

 Parameter Expansion

 String Format Overflow in syslog()

© 2009 Cigital

Attack pattern 1:

Make the client invisible

 Remove the client from the

communications loop and

talk directly to the server

 Leverage incorrect trust

model (never trust the

client)

 Example: hacking browsers

that lie (opera cookie foo)

© 2009 Cigital

Breaking stuff is important

 Learning how to think like

an attacker is essential

 Do not shy away from

discussing attacks

 Engineers learn from

stories of failure

 Attacking projects is useful

© 2009 Cigital

Great, now what do we

do about this?

© 2009 Cigital

Three pillars of software security

1. Risk management framework

2. Touchpoints

3. Knowledge

© 2009 Cigital

Software security touchpoints

© 2009 Cigital

What works: BSIMM

 Building Security

In Maturity Model

 Real data from

real initiatives

© 2009 Cigital

 Four domains

 Twelve practices

 See informIT article at
http://www.informit.com/articles/article.aspx?p=1271382

A Software Security Framework

© 2009 Cigital

Ten surprising things

1. Bad metrics hurt

2. Secure-by default

frameworks

3. Nobody uses

WAFs

4. QA can’t do

software security

5. Evangelize over

audit

6. ARA is hard

7. Practitioners don’t

talk attacks

8. Training is

advanced

9. Pen testing is

diminishing

10. Fuzz testing

 http://www.informit.com/articles/article.aspx?p=1315431

© 2009 Cigital

Where to Learn More

© 2009 Cigital

informIT & Justice League

 www.informIT.com

 No-nonsense monthly security

column by Gary McGraw

 www.cigital.com/justiceleague

 In-depth thought leadership blog

from the Cigital Principals

 Scott Matsumoto

 Gary McGraw

 Sammy Migues

 Craig Miller

 John Steven

© 2009 Cigital

IEEE Security & Privacy Magazine + 2 Podcasts

 www.cigital.com/silverbullet

 www.cigital.com/realitycheck

 Building Security In

 Software Security Best

Practices column edited by

John Steven

 www.computer.org/security/bsisub/

© 2009 Cigital

Software Security: the book

 How to DO software security

 Best practices

 Tools

 Knowledge

 Cornerstone of the Addison-

Wesley Software Security

Series

 www.swsec.com

© 2009 Cigital

For more
 Cigital’s Software Security

Group invents and delivers
Software Quality Management

 See the Addison-Wesley
Software Security series

 WE NEED GREAT PEOPLE

 Send e-mail: gem@cigital.com

“So now, when we face a choice between

adding features and resolving security issues,
we need to choose security.”

-Bill Gates

